A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores.
نویسندگان
چکیده
Ca(2+)-triggered release of neurotransmitters and hormones depends on soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) to drive the fusion of the vesicle and plasma membranes. The formation of the SNARE complex by the vesicle SNARE synaptobrevin 2 (syb2) and the two plasma membrane SNAREs syntaxin (syx) and SNAP-25 draws the two membranes together, but the events that follow membrane juxtaposition, and the ways that SNAREs remodel lipid membranes remain poorly understood. The SNAREs syx and syb2 have transmembrane domains (TMDs) that can exert force directly on the lipid bilayers. The TMD of syx influences fusion pore flux in a manner that suggests it lines the nascent fusion pore through the plasma membrane. The TMD of syb2 traverses the vesicle membrane and is the most likely partner to syx in completing a proteinaceous fusion pore through the vesicle membrane, but the role of this vesicle SNARE in fusion pores has yet to be tested. Here amperometry and conductance measurements were performed to probe the function of the syb2 TMD in fusion pores formed during catecholamine exocytosis in mouse chromaffin cells. Fusion pore flux was sensitive to the size and charge of TMD residues near the N terminus; fusion pore conductance was altered by substitutions at these sites. Unlike syx, the syb2 residues that influence fusion pore permeation fell along two α-helical faces of its TMD, rather than one. These results indicate a role for the syb2 TMD in nascent fusion pores, but in a very different structural arrangement from that of the syx TMD.
منابع مشابه
Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion.
Deletion of synaptobrevin/vesicle-associated membrane protein, the major synaptic vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptor (R-SNARE), severely decreases but does not abolish spontaneous and evoked synaptic vesicle exocytosis. We now show that the closely related R-SNARE protein cellubrevin rescues synaptic transmission in synaptobrevin-deficient neurons but ...
متن کاملMutational analysis of synaptobrevin transmembrane domain oligomerization.
Synaptobrevin 2 is thought to facilitate fusion of synaptic vesicles with the presynaptic membrane through formation of a soluble NSF attachment protein receptor complex (SNARE) with syntaxin 1a and a synaptosomal associated protein of 25 kDa (SNAP-25). Previous reports have described a homodimer of synaptobrevin that is dependent on the transmembrane domain. However, these reports disagree abo...
متن کاملSynaptobrevin transmembrane domain influences exocytosis by perturbing vesicle membrane curvature.
Membrane fusion requires that nearly flat lipid bilayers deform into shapes with very high curvature. This makes membrane bending a critical force in determining fusion mechanisms. A lipid bilayer will bend spontaneously when material is distributed asymmetrically between its two monolayers, and its spontaneous curvature (C0) will influence the stability of curved fusion intermediates. Prior wo...
متن کاملJuxtamembrane tryptophans of synaptobrevin 2 control the process of membrane fusion.
Synaptobrevin 2 (Syb2), syntaxin (Sx1A), and SNAP-25, generate a force to induce fusion pore formation. The v-SNARE, Syb2, is anchored to the vesicle membrane by a single transmembrane domain. Here we show that 2 tryptophans (W89/W90) located in the juxtamembrane domain of Syb2, which stabilize the transmembrane (TM) domain position, control the ratio of spontaneous vs. stimulated membrane fusi...
متن کاملDeterminants of Synaptobrevin Regulation in Membranes□D
Neuronal exocytosis is driven by the formation of SNARE complexes between synaptobrevin 2 on synaptic vesicles and SNAP-25/syntaxin 1 on the plasma membrane. It has remained controversial, however, whether SNAREs are constitutively active or whether they are down-regulated until fusion is triggered. We now show that synaptobrevin in proteoliposomes as well as in purified synaptic vesicles is co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 14 شماره
صفحات -
تاریخ انتشار 2015